a2 United States Patent

Munoz

US009304920B2

US 9,304,920 B2
Apr. §5,2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

SYSTEM AND METHOD FOR PROVIDING
CACHE-AWARE LIGHTWEIGHT PRODUCER
CONSUMER QUEUES

Applicant: LSI Corporation, San Jose, CA (US)

Inventor: Rebert J. Munoz, Round Rock, TX
(US)

Assignee: Avago Technologies General IP
(Singapore) Pte. Ltd., Singapore (SG)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 276 days.

Appl. No.: 13/908,072

Filed: Jun. 3,2013
Prior Publication Data
US 2014/0351519 Al Nov. 27, 2014

Related U.S. Application Data

Provisional application No. 61/826,549, filed on May
23, 2013.

(58) Field of Classification Search

CPC GOGF 12/0811; GOG6F 12/0897; GOGF
12/0084; GOGF 2212/283
USPC i 711/119-122, 130

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,751,737 B2* 6/2014 Buetal ... 711/110
OTHER PUBLICATIONS

Massimo Torquati; Single-Producer/Single-Consumer Queues on
Shared Cache Multi-Core Systems; Nov. 30, 2010; University of
Pisa, Italy.

* cited by examiner
Primary Examiner — Jasmine Song

(57) ABSTRACT

A multiprocessor system or a system of hardware accelera-
tors is provided to reduce cache ping-ponging and to provide
improved single producer single consumer (SPSC) queues
and methods. The systems are configured for specifying sepa-
rate cache attributes for inner (e.g., local) cache and outer
(e.g., shared) cache for promoting lower system overhead.

Int. C1. Separate cache attributes are specified such that shared vari-
GOGF 12/08 (2006.01) ables are cacheable only in a cache level shared by multiple
US. CL processors.
CPC GO6F 12/0811 (2013.01); GO6F 12/084
(2013.01) 20 Claims, 3 Drawing Sheets
1 GO\
104
Main Memory /
110
Memory Controlier S/
/1 o8
L3 Cache (Shared Cache)
N
¥
106 Local Cache Local Cache /"7%
| (LYL2 Cache) (L1/L.2 Cache) 1
102 ‘\& Processor / Processor/ J 102
Core Cluster Core Cluster

U.S. Patent Apr. 5, 2016 Sheet 1 of 3 US 9,304,920 B2

100\
104
Main Memory /
¥
f‘.f 10
Memory Controller
¥
/108
L3 Cache (Shared Cache)
& 2
¥ ki
706“\ Local Cache Local Cache | /7 106
1 (L1/L2 Cache) (L1/L.2 Cache) 1
102 \b Processor / Processor / @/ 102
Core Cluster Core Cluster

US 9,304,920 B2

Sheet 2 of 3

Apr. 5, 2016

U.S. Patent

¢ Ol

JoLI3 wina) 1o Moy Buisseooid Jueisad

m Buisssoosd ssonposd puz wh

3

Nmm
o1z

SWNSUOD O} SGRIBAR S1 WS MaU Smouy
IBLNSUCD 0% X8pulaiuiod sjum palsus
o} xspuiiaiuiod sium ieool] d 84018

&

Qmm
/902)

SSINTEXS UOHONIISUI XBU 8I0§8q
U99S aq [Im AIOWSLL 0] S21UM Joud el 0s
LUCHONISU Jeiieg AIDWSU BIED SInoexd

3

Em
/902 -

{senoan st adng i puncde Buiddesm)
JBLUNG U UoREDs| [enusnbsas pau o)
XSpUl/IerIod s1um 8001 d soueAapy

&

&m
w0z

xspuiisiuiod 18 18Unag o} eiep paisanbsal si0ig

xepuiasuied sy [Boo] d Ag peyibeds

ey

pue sngy JeBuo) ou Un §EISH00Ig

[
WNN\\\

SBA

S DR peieus o) enbs
1 @YBLU UOED0] Jayng peu

BN 01 ejum T eoo] d Buioueape,
Ty PINOM,

peai joo] d oy enbs
1 SYBW UOIIRIO IBYNG 1X8U

i

vwwkﬂ

&

pesl 2o d ¢l pead paieys aioig
&

BN ~.0 sjm T eoo) d Buoueape,

o pinopn

A4

M Buissanoud tsonpoud ueig w

Buissa00id J80npold

v//.. 002

US 9,304,920 B2

Sheet 3 of 3

Apr. 5, 2016

U.S. Patent

£ Old

m Buisssnoud JsWnNsuns pus wﬂ

{

ZZe B pest SEM 1BY] BleD Jalng LHnay
fOLE w

10U 10 jRy AjBSU 81 ISENG I MO UBD
0ce B Jssonpodd 0s xepuisiund pess paieys
/808 0} xspuissiniod pead jeool d sioig

$

pess jeool d Ag o) peiniod Jayng u
emmk« UoneoO| WOk e1ep yosisld Ajeuondr

!

(1enosD st Jaung 4 punose Buiddeim)
mm\m&“ JBung U UciEN0} [epuenbes peu o)
/808 Kapulisuind pess 1200 d sduBADY

}

xsput jajund peal ool d Ag pawyosds
918 A yopuysiuiod 18 B1ED JOUNg pEaN

_—

uonesipu Aidwe wimal jo moy Bulesanoid
yesal pue eng Jefuo] ou un e1sMooig

4
wmml\

S3A

pess |eaoj djenbs
_Sjum paIBYS $90(

= peat eoor d oy enbs

08
3

gl jeo0] d 0] Sl pPaIBYS 8J01Q
)

pre]

ON e SHIMTIEOD] d 880(] e

M Buissaooid ISWNSUCD UBIs w

BuISS9204d JOWINSUGD F;(
00g

US 9,304,920 B2

1
SYSTEM AND METHOD FOR PROVIDING
CACHE-AWARE LIGHTWEIGHT PRODUCER
CONSUMER QUEUES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. Provisional Appli-
cation No. 61/826,549 filed on May 23, 2013, entitled: “A
System and Method for Providing Cache-Aware Lightweight
Producer Consumer Queues”, which is hereby incorporated
by reference in its entirety.

FIELD OF THE INVENTION

The present disclosure relates to the field of distributed
processing systems and particularly to a system and method
for providing cache-aware lightweight producer consumer
queues.

BACKGROUND

Single producer, single consumer queues are widely appli-
cable as a building block for many systems which employ
multiple cooperating processors. In such systems, cache
ping-ponging often occurs. A number of techniques are cur-
rently implemented in an effort to minimize cache ping-
ponging in such systems.

SUMMARY

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key and/or essential features of the claimed subject
matter. Also, this Summary is not intended to limit the scope
of the claimed subject matter in any manner

Aspects of the disclosure pertain to a system and method
for providing cache-aware lightweight producer consumer
queues.

BRIEF DESCRIPTION OF THE FIGURES

The detailed description is described with reference to the
accompanying figures:

FIG. 1 is an example conceptual block diagram schematic
of'a system in accordance with an exemplary embodiment of
the present disclosure;

FIG. 2 is a flow chart illustrating a method of operation of
a producer processor of the system shown in FIG. 1 in accor-
dance with an exemplary embodiment of the present disclo-
sure; and

FIG. 3 is a flow chart illustrating a method of operation of
a consumer processor of the system shown in FIG. 1 in accor-
dance with an exemplary embodiment of the present disclo-
sure

WRITTEN DESCRIPTION

Embodiments of the invention will become apparent with
reference to the accompanying drawings, which form a part
hereof, and which show, by way of illustration, example
features. The features can, however, be embodied in many
different forms and should not be construed as limited to the
combinations set forth herein; rather, these combinations are
provided so that this disclosure will be thorough and com-
plete, and will fully convey the scope. Among other things,

15

20

25

30

40

45

2

the features of the disclosure can be facilitated by methods,
devices, and/or embodied in articles of commerce. The fol-
lowing detailed description is, therefore, not to be taken in a
limiting sense.

Referring to FIG. 1, a system 100 is shown. In embodi-
ments, the system 100 is a computer system. In embodiments,
the system 100 is a distributed processing system (e.g., mul-
tiprocessing system). In embodiments, the system 100 is a
symmetric multiprocessing (SMP) system. In other embodi-
ments, the system 100 is an asymmetric multiprocessing
(AMP) system. In embodiments, the system 100 includes two
or more processors (e.g., processor cores, core clusters, cen-
tral processing units (CPUs)) 102. In embodiments, process-
ing for the system 100 is distributed across the processors
102, such that the processors 102 are cooperating processors.
In embodiments, the processors 102 are communicatively
coupled with each other (e.g., exchange information with
each other). In embodiments, the processors 102 are hard-
ware within the computer system 100 that carry out the
instructions of a computer program by performing the basic
arithmetical, logical and input/output operations of the com-
puter system 100. In other embodiments, one or both of the
processors 102 described above are specialized hardware
accelerators (e.g., an engine that processes statistics and/or
counter update requests from other engines or other proces-
sors) that provide services to the processors 102 or other parts
(e.g., other components) of the system 100.

In embodiments, the system 100 includes a memory (e.g.,
main memory) 104. In embodiments, the processors 102 are
connected to the main memory 104. In embodiments, the
main memory 104 is shared memory, such that each of the
processors 102 are configured for accessing the main memory
104. In embodiments, the shared memory 104 is a block of
random access memory (RAM) (e.g., dynamic random
access memory (DRAM)) that is configured for being
accessed by the processors 102 of the system 100. In embodi-
ments, the processors 102 are controlled by a single operating
system (e.g., a single operating system instance). In embodi-
ments, the main memory 104 is configured for operating
under a single operating system. In embodiments, the oper-
ating system is a collection of software that manages hard-
ware resources of the system 100 and provides services for
computer programs of the system 100.

In embodiments, the processors 102 are configured for
running independently of one another, each processor con-
figured for executing different programs and working on dif-
ferent data and with the capability of sharing common
resources (e.g., memory). In embodiments, the processors
102 are connected to each other, such as via system buses,
crossbar switches, or on-chip mesh networks. In embodi-
ments, each processor 102 has an associated private high-
speed memory (e.g., cache memory, cache, local cache, CPU
cache) 106 for speeding up access to speed up main memory
data access and to reduce system bus traffic. In embodiments,
the local cache 106 (e.g., CPU cache) is used by the processor
102 (e.g., CPU) to reduce the average time to access memory.
In embodiments, the cache 106 is smaller, faster memory
which stores copies of data from the most frequently used
locations of the main memory 104. In embodiments, local
cache 106 (e.g., inner cache) includes Level 1 (1) cache and
Level 2 (L2) cache. In further embodiments, the system 100
includes shared cache 108, which is configured for being
shared by the processors 102. In embodiments, shared cache
108 (e.g., outer cache) includes Level 3 (L3) cache. In
embodiments, L1 and L2 cache are faster than L3 cache.

In embodiments, the system 100 is configured for allowing
any of the processors 102 to work on any task no matter where

US 9,304,920 B2

3

the data for that task are located in memory, provided that
each task in the system is not in execution on two or more
processors at the same time. In some embodiments, with
proper operating system support, the system 100 is config-
ured for moving tasks between processors 102 to balance the
workload efficiently. In embodiments, the system 100 is con-
figured for implementing software for multi-threaded (multi-
tasked) processing.

In embodiments, the system 100 includes a memory con-
troller 110. In embodiments, the memory controller 110 is
connected between main memory 104 and the processors
102. In embodiments, the memory controller 110 is a digital
circuit whichmanages the flow of data going to and from the
main memory 104.

In embodiments, the system 100 is configured for imple-
menting single producer, single consumer (SPSC) queues
(e.g., buffers, queue buffers, queue data) as building blocks
for the multiprocessing system. In embodiments, the SPSC
queue is a data structure which is implemented via a first-in
first-out (FIFO) buffer or circular butfer. In embodiments, the
SPSC queue is stored in memory of the system 100 and
includes data, the data configured for being read from or
written to the SPSC queue. In embodiments, a producer is a
process (e.g., an instance of a computer program being
executed) or a thread (e.g., software program instructions
which can execute in parallel with other threads) executing on
one of the processors 102 or the equivalent functionality
being executed in a specialized hardware accelerator. The
producer is configured for producing an item (e.g., a task or
set of program instructions, a buffer entry, a memory pointer,
a variable, an element) and placing the item into the buffer
(e.g., SPSC queue). In embodiments, a consumer is a process
or thread executing on one of the processors 102 or the
equivalent functionality being executed in a specialized hard-
ware accelerator. The consumer and producer share access to
the SPSC queue, the consumer being configured for consum-
ing (e.g., removing) items from the buffer (e.g., SPSC queue).
In embodiments, the consumer and producer are concurrent
entities executing in parallel on separate processors or in
equivalent hardware accelerators. In embodiments in which a
hardware accelerator is used in place of a processor, a pro-
cessor typically serves as the producer and a specialized
hardware accelerator serves as the consumer.

In embodiments, the system 100, via its software and/or its
underlying hardware facilities (e.g., via a memory manage-
ment unit (MMU)) is configured for controlling allocation
and/or behavior of its caches (106, 108). For example, soft-
ware of the system 100 and/or underlying hardware facilities
of'the system 100 are implemented for specifying differential
cache treatment. In embodiments, separate (e.g., proper)
cache attributes are specified (e.g., set) for inner (e.g., local)
caches 106 and outer (e.g., shared) cache 108. In embodi-
ments, for a processor 102 upon which a producer is execut-
ing (e.g., the producing processor), the separate cache
attributes are specified such that the queue buffer (e.g., SPSC
queue) and the control variables that the producer writes to
signal to the consumer (e.g., shared variables) are allocable/
cacheable in the shared (e.g., L.3) cache 108, and are not
cacheable in the local cache 106 of the producing processor
102. In embodiments, the system 100 is configured for writ-
ing to the copy of the queue buffer allocated in the shared
(e.g., L3) cache 108. In embodiments, for a processor 102
upon which a consumer is executing (e.g., the consuming
processor), the separate cache attributes are specified such
that the queue buffer (e.g., SPSC queue) may or may not be
cacheable/allocable in the local cache 106 of the consuming
processor, but is allocable/cacheable in the shared (e.g., L3)

10

15

20

25

30

35

40

45

50

55

60

65

4

cache 108. Further, for the consuming processor, the control
variables that the consumer writes to signal to the producer
(e.g., shared variables) are allocable/cacheable in the shared
(e.g., L3) cache 108 and are not cacheable in the local cache
106 of the consuming processor 102. In embodiments, the
processor local variables (e.g., p_local_xxx variables) are
local to each processor and/or thread (i.e., are not shared/
visible across processors and/or threads) and are configured
(e.g., via the MMU) to be cacheable/allocable in local (e.g.,
Level 1 (L1)or Level 2 (L2)) cache 106. As mentioned above,
the shared variables (e.g., shared_write) are set up (e.g., via
the MMU) such that variables that are written but not read by
the processor in question are cacheable only in a cache level
shared by the processors 102 (e.g., Level 3 (L.3) cache 108,
shared cache 108).

In embodiments, by restricting truly shared memory to
shared (I.3) cache 108 (as described above), the system 100,
at least for the producing processor, promotes elimination of
cache ping-ponging (i.e., cache thrashing where a cache line
rapidly vacillates back and forth between processor caches
where each movement between caches requires the overhead
of additional cache coherence transactions), and thus, pro-
motes improved system efficiency and reduced overhead.
Further, the above-referenced attributes of the system 100
promote scalability and promote the ability of the processors
102 to exchange information with each other and with hard-
ware accelerators in a manner which requires very low pro-
cessor and cache subsystem overhead. In embodiments, the
system 100 utilizes operating system/device driver software
orthe equivalent to set the proper cache attributes for memory
management unit (MMU) pages that are allocable to the
shared cache 108 or the local caches 106. In some embodi-
ments, the system 100 implements core clusters 102 of four
ARM CPUs, where the clusters 102 share the L3 cache 108,
processor(s) within a respective cluster 102 share that clus-
ter’s L2 cache, inner cache attributes determine cacheability
in the L1/L2 cache, outer cache attributes determine cache-
ability in the L3 cache.

FIG. 2 is a flowchart illustrating a method of operation of
the system 100 described above. In embodiments, the method
200 includes a step of a first processor (e.g., producing/pro-
ducer processor) of the system processing data (e.g., begin-
ning processing) including determining if advancing a first
variable (e.g., p_local_write) of a buffer from a first location
in the buffer to a second location in the buffer would make the
first variable equal to a second variable (e.g., p_local_read),
the first variable and the second variable being processor local
variables (Step 202). In embodiments, when the system deter-
mines that advancing the first variable of the buffer from the
first location to the second location would not make the first
variable equal to the second variable, the method 200 further
includes: storing requested data to the buffer at a pointer/
index specified by the first variable (e.g., p_local_write
pointer/index) (Step 204); advancing the first variable (e.g.,
p_local_write pointer/index) to the second location (e.g., the
next sequential location) in the buffer (e.g., wrapping around
if the buffer is circular) (Step 206); executing a data memory
barrier instruction for allowing prior writes to memory to be
seen before a next instruction executes (Step 208); and storing
the first variable (e.g., p_local_write pointer/index) to shared
cache (e.g., shared_write pointer/index) so that a second pro-
cessor (e.g., consuming/consumer processor) of the system is
alerted that a new item (e.g., the first variable) is available for
consumption by the second processor (Step 210).

In embodiments, when the system 100 determines that
advancing the first variable of the buffer from the first location
to the second location would make the first variable equal to

US 9,304,920 B2

5

the second variable, the method 200 further includes the step
of determining if advancing the first variable (e.g., p_
local_write) of the buffer from the first location to the second
location would make the first variable equal to a shared vari-
able (e.g., shared_read) (Step 212). In embodiments, when
the system 100 determines that advancing the first variable
(e.g., p_local_write) of the buffer from the first location to the
second location would not make the first variable equal to the
shared variable (e.g., shared_read), the method 200 further
includes: storing the shared variable (e.g., shared_read) to the
second variable (e.g., p_local_read) (Step 214); storing
requested data to the buffer at a pointer/index specified by the
first variable (e.g., p_local_write pointer/index) (Step 216);
advancing the first variable (e.g., p_local_write pointer/in-
dex) to the second location (e.g., the next sequential location)
in the buffer (e.g., wrapping around if the buffer is circular)
(Step 218); executing a data memory barrier instruction for
allowing prior writes to memory to be seen before a next
instruction executes (Step 220); and storing the first variable
(e.g., p_local_write pointer/index) to shared cache (e.g.,
shared_write pointer/index) so that a second processor (e.g.,
consuming/consumer processor) of the system is alerted that
a new item (e.g., the first variable) is available for consump-
tion by the second processor (Step 222). In embodiments,
when the system 100 determines that advancing the first
variable (e.g., p_local_write) of the buffer from the first loca-
tion to the second location would make the first variable equal
to the shared variable (e.g., shared_read), the method 200
further includes stalling processing by the first processor until
a time when advancing the first variable (e.g., p_local_write)
of the buffer from the first location to the second location
would not make the first variable equal to the shared variable
(e.g., shared_read) or optionally, returning a queue full error
(Step 224).

FIG. 3 is a flowchart illustrating a method of operation of
the system 100 described above. In embodiments, the method
300 includes a step of processing data (e.g., beginning pro-
cessing) including determining via a first processor (e.g.,
consumer processor) of the system if a first variable (e.g.,
p_local_write) is equal to a second variable (e.g., p_
local_read), the first and second variables being processor
local variables (Step 302). In embodiments, when the first
variable (e.g., p_local_write) is determined as not being equal
to the second variable (p_local_read), the method 300
includes: reading buffer data at a pointer/index specified by
the second variable (e.g., p_local_read pointer/index) (Step
304); advancing the second variable (e.g., p_local_read
pointer/index) to a next sequential location in a buffer (e.g.,
wrapping around if buffer is circular) (Step 306); storing the
second variable (e.g., p_local_read pointer/index) to the
shared cache (e.g., shared_read pointer/index) so that a sec-
ond processor (e.g., producer processor) can determine if the
buffer is full or not (Step 308); and returning buffer data that
was read (Step 310).

In embodiments, when the first variable (e.g., p_
local_write) is determined as being equal to the second vari-
able (e.g., p_local_read), the method 300 includes a step of
determining if the second variable (e.g., p_local_read) is
equal to a shared variable (e.g., shared_write) (Step 312). In
embodiments, when the second variable is determined as not
being equal to the shared variable, the method 300 includes:
storing the shared variable to the first variable (Step 314);
reading buffer data at a pointer/index specified by the second
variable (e.g., p_local_read pointer/index) (Step 316);
advancing the second variable (e.g., p_local_read pointer/
index) to a next sequential location in a buffer (e.g., wrapping
around if buffer is circular) (Step 318); storing the second

20

30

40

45

6

variable (e.g., p_local_read pointer/index) to the shared cache
(e.g., shared_read pointer/index) so that a second processor
(e.g., producer processor) can determine if the buffer is full or
not (Step 320); and returning buffer data that was read (Step
322). In embodiments, when the second variable (e.g., p_lo-
cal_read) is determined as being equal to the shared variable
(e.g., shared_write), the method 300 includes stalling pro-
cessing by the consumer processor until a time when the
second variable (p_local_read) is not equal to the shared
variable (e.g., shared_write) (Step 324).

In some embodiments, after advancing the second variable
(e.g., p_local_read pointer/index) to a next sequential loca-
tion in a buffer (Steps 306 and 318), but prior to storing the
second variable (e.g., p_local_read pointer/index) to the
shared cache (e.g., shared_read pointer/index) so that a sec-
ond processor (e.g., producer processor) can determine if the
buffer is full or not (Steps 308, 320), the method 300 includes
a step of prefetching data from a buffer location pointed to by
the second variable (Step 350).

It is to be noted that the foregoing described embodiments
may be conveniently implemented using conventional gen-
eral purpose digital computers programmed according to the
teachings of the present specification, as will be apparent to
those skilled in the computer art. Appropriate software coding
may readily be prepared by skilled programmers based on the
teachings of the present disclosure, as will be apparent to
those skilled in the software art.

It is to be understood that the embodiments described
herein may be conveniently implemented in forms of a soft-
ware package. Such a software package may be a computer
program product which employs a non-transitory computer-
readable storage medium including stored computer code
which is used to program a computer to perform the disclosed
functions and processes disclosed herein. The computer-
readable medium may include, but is not limited to, any type
of'conventional floppy disk, optical disk, CD-ROM, magnetic
disk, hard disk drive, magneto-optical disk, ROM, RAM,
EPROM, EEPROM, magnetic or optical card, or any other
suitable media for storing electronic instructions.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

What is claimed is:
1. A method of operation of a multiprocessor system, the
method comprising:

determining via a first processor of the system if advancing
a first variable of a buffer from a first location in the
buffer to a second location in the bufter would make the
first variable equal to a second variable, the first variable
and the second variable being processor local variables;

when determining indicates that advancing the first vari-
able from the first location to the second location would
not make the first variable equal to the second variable,
performing steps of:
storing requested data to the buffer at a pointer specified

by the first variable; and
advancing the first variable to the second location in the
buffer; and

when determining indicates that advancing the first vari-
able from the first location to the second location would
make the first variable equal to the second variable,
performing steps of:

US 9,304,920 B2

7

determining whether advancing the first variable from
the first location to the second location would make
the first variable equal to a shared variable; and

storing the shared variable to the second variable when
advancing the first variable from the first location to
the second location would not make the first variable
equal to the shared variable.

2. The method as claimed in claim 1, wherein the first
processor is a producer processor and a second processor is a
consumer processor having access to the buffer concurrent
with the producer processor, wherein the first variable
includes a memory pointer or an index and the second vari-
able includes a memory pointer or an index.

3. The method as claimed in claim 1, further comprising:

when determining indicates that advancing the first vari-

able from the first location to the second location would

not make the first variable equal to the second variable,

further performing a step of:

executing a data memory barrier instruction for allowing
prior writes to memory of the system to be detected
before a next instruction executes; and

storing the first variable to shared cache of the system to
provide an indication to a second processor of the
system that the first variable is available for consump-
tion by the second processor, shared cache being
shared by the first processor and the second processor.

4. The method as claimed in claim 1, further comprising:

associating the memory pointer or the index for the first

variable with a local buffer, associating the memory
pointer or the index for the second variable with the local
buffer, and associating a memory pointer or an index of
the shared variables with a shared buffer.

5. The method as claimed in claim 2, further comprising:

managing memory access such that variables written and

not read by at least one of the first processor and the
second processor are cacheable only in shared cache.

6. The method as claimed in claim 1, further comprising:

when determining indicates that advancing the first vari-

able from the first location to the second location would
not make the first variable equal to the shared variable,
further performing a step of:

storing requested data to the buffer at a pointer specified by

the first variable.

7. The method as claimed in claim 6, further comprising:

when determining indicates that advancing the first vari-

able from the first location to the second location would
not make the first variable equal to the shared variable,
further performing a step of:

advancing the first variable to the second location in the

buffer.

8. The method as claimed in claim 7, further comprising:

when determining indicates that advancing the first vari-

able from the first location to the second location would
not make the first variable equal to the shared variable,
further performing a step of:

executing a data memory barrier instruction.

9. The method as claimed in claim 8, wherein the buffer is
a first buffer and further comprising:

when determining indicates that advancing the first vari-

able from the first location to the second location would
not make the first variable equal to the shared variable,
further performing a step of:

storing the first variable to shared cache of the system to

provide an indication in a second buffer, the indication in
the second buffer indicating to a second processor of the
system that the first variable is available for consump-
tion by the second processor.

10

25

30

35

40

45

8

10. The method as claimed in claim 1, further comprising:

when determining indicates that advancing the first vari-
able from the first location to the second location would
make the first variable equal to the shared variable, fur-
ther performing a step of:

stalling processing by the first processor until a time when

advancing the first variable of the buffer from the first
location to the second location would not make the first
variable equal to the shared variable.

11. The method as claimed in claim 1, wherein the shared
variable is cacheable only in shared cache of the system,
shared cache being shared by the first processor and a second
processor of the system.

12. The method as claimed in claim 1, wherein the proces-
sor local variables are not shared between the first processor
and a second processor of the system.

13. A non-transitory computer-readable medium having
computer-executable instructions for performing a method of
operation of a multiprocessor system, the method compris-
ing:

determining via a first processor of the system if advancing

a first variable of a buffer from a first location in the

buffer to a second location in the bufter would make the

first variable equal to a second variable, the first variable

and the second variable being processor local variables;

when determining indicates that advancing the first vari-

able from the first location to the second location would

not make the first variable equal to the second variable,

performing steps of:

storing requested data to the buffer at a pointer specified
by the first variable;

advancing the first variable to the second location in the
buffer; and

executing a data memory barrier instruction for allowing
prior writes to memory of the system to be detected
before a next instruction executes; and

when determining indicates that advancing the first vari-

able from the first location to the second location would

make the first variable equal to the second variable,

performing steps of:

determining whether advancing the first variable from
the first location to the second location would make
the first variable equal to a shared variable; and

storing the shared variable to the second variable when
advancing the first variable from the first location to
the second location would not make the first variable
equal to the shared variable.

14. The non-transitory computer-readable medium as
claimed in claim 13, the method further comprising:

when determining indicates that advancing the first vari-

able from the first location to the second location would

not make the first variable equal to the second variable,

further performing a step of:

storing the first variable to shared cache of the system to
provide an indication to a second processor of the
system that the first variable is available for consump-
tion by the second processor, shared cache being
shared by the first processor and the second processor.

15. The non-transitory computer-readable medium as
claimed in claim 14, wherein the pointer is a first pointer
associated with local cache, and wherein storing the first
variable to the shared cache of the system includes storing the
first pointer specified by the first variable to a second pointer
associated with the shared cache.

US 9,304,920 B2

9

16. The non-transitory computer-readable medium as
claimed in claim 13, the method further comprising:

when determining indicates that advancing the first vari-

able from the first location to the second location would
not make the first variable equal to the shared variable,
further performing steps of:

storing requested data to the buffer at a pointer specified by

the first variable;

advancing the first variable to the second location in the

buffer;

executing a data memory barrier instruction for allowing

prior writes to memory of the system to be detected
before a next instruction executes; and

storing the first variable to shared cache of the system to

provide anindication to a second processor of the system
that the first variable is available for consumption by the
second processor.

17. The non-transitory computer-readable medium as
claimed in claim 13, the method further comprising:

when determining indicates that advancing the first vari-

able from the first location to the second location would
make the first variable equal to the shared variable, fur-
ther performing a step of:

stalling processing by the first processor until a time when

advancing the first variable of the buffer from the first
location to the second location would not make the first
variable equal to the shared variable.

18. The non-transitory computer-readable medium as
claimed in claim 13, wherein the shared variable is cacheable
only in shared cache of the system, shared cache being shared
by the first processor and a second processor of the system.

19. The non-transitory computer-readable medium as
claimed in claim 13, wherein the processor local variables are
not shared between the first processor and a second processor
of the system.

20. A multiprocessor system, comprising:

a first processor, the first processor including local cache

accessible only by the first processor;

a second processor communicatively couple with the first

processor, the second processor including local cache
accessible only by the second processor;

10

15

20

25

30

35

40

10

a memory, the memory being communicatively coupled
with the first processor and the second processor;

a shared cache, the shared cache configured for being
accessible by the first processor and the second proces-
sor,

wherein the system is a distributed processing system and
is configured for allocating a first copy of a single pro-
ducer single consumer queue and a copy of shared vari-
ables to the shared cache and at least a second copy of the
single producer single consumer queue and a copy of
local variables respectively to the first local cache and
the second local cache when the memory is first
accessed by the processors, the shared variables being
control variables used by the processors to signal each
other that data is available in the first copy of the single
producer single consumer queue and being cacheable
only in the shared cache, and the local variables being
control variables used by the processors to respectively
point to a location in the at least the second copy of the
single producer single consumer queue and are cache-
able only in the respective local cache; and

wherein the system is further configured for determining
via at least one of the first processor or the second pro-
cessor of the system if a first variable of a buffer is equal
to a second variable of the buffer, the first variable and
the second variable being processor local control vari-
ables;
when determining indicates that the first variable is not

equal to the second variable, performing steps of:

reading requested data from the buffer at a pointer
specified by the second variable; and

advancing the second variable to a second location in
the buffer; and

when determining indicates that the first variable would

be equal to the second variable, performing steps of:

determining whether the second variable would be
equal to a shared variable; and

storing the shared variable to the first variable when
the second variable would not be equal to the
shared variable.

#* #* #* #* #*

